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Introduction 

• Goal: To identify important stopover sites for migrant 

landbirds during spring and fall across the 

Southeastern US 

• Objective 1: Determine the general patterns of movement across 

the region using the directional information derived from NEXRAD 

• Objective 2: Use data collected from eight NEXRAD stations to 

map important stopover sites within the viewshed of each radar 

station 

• Objective 3: Use the information from Objective 2 in conjunction 

with landscape metrics to develop statistical models of how bird 

density relates to habitat structure and composition 

• Objective 4: Use these statistical models to predict potentially 

important stopover sites in areas not represented by the radar 



Methods 

• Objective 1: Directional Analysis 

• Radar velocity data collected 3 hours after sunset 

• Mean direction calculated by weighting flight directions by target 

density at 20m altitudinal intervals 

• Program ORIANA used to calculate mean flight direction across 

nights for each season at each radar station 



Methods 

• Objectives 2-4: Stopover Habitat Classification 

• All data screened for bird migration, and then to remove nights with 

contamination by precipitation or any radar anomalies 

• Data corrected for range and solar biases using algorithms from 

Buler and Diehl (2009) and detection probability based on Buler 

and Dawson 2012. 

• For stopover modeling, all data resampled to 1km grid and 

subsampled to grid cells at least 5km apart to reduce spatial 

autocorrelation 

• Boosted Regression Trees chosen because of ability to model 

complex relationships between covariates and proven track record 

in predictive modeling 

• Parameterization of BRTs follows Elith and Leathwick 2008 



Covariates 
Variable name Description Mean value (range) 

Hardwood Forest Edge Proportion of Hardwood Forest Edge  0.2 (0.0 – 0.77) 

Hardwood Forest Core Proportion of Hardwood Forest Core 0.06 (0.0 – 1) 

Pasture/Cultivated Proportion of Pasture/Cultivated landcover class 0.19 (0.0 – 1) 

Grassland Proportion of Grassland landcover class 0.04 (0.0 – 1) 

Open Space Edge Proportion of Developed Open Space Edge 0.05 (0.0 – 0.78) 

Open-space Core Proportion of Developed Open Space Core 0.001 (0.0 – 0.9) 

Developed Edge Proportion of Developed (Low, Med, High) Edge 0.03 (0.0 – 0.76) 

Developed Core Proportion of Developed (Low, Med, High) Core 0.006 (0.0 – 1.0) 

Canopy Height Mean basal-weighted canopy height 85.32 (0.0 – 255.08) 

Canopy Height 

Heterogeneity 

Standard deviation of mean canopy height 60.38 (0.0 – 122.06) 

NDVI Mean Normalized Difference Vegetative Index 0.67 (0.0 – 0.91) (fall) 

0.64 (0.0 – 0.9)  (spring) 

Distance to Coast Distance to coast (km) 67.7 (0 – 287.5) 

Relative Elevation Elevation relative to surrounding landscape (3x3km window) (m) 4.39 (0.0 – 65.6) 



Boosted Regression Trees (BRT) 

• Background 

• Combines statistical and machine-learning methods to increase 

predictive ability 

• Ability to model complex relationships, important when spatial 

nonstationarity is expected 

• Not as ‘black box’ as other modeling techniques 

• Parameterization (follows Elith and Leathwick 2008) 

• Tree Complexity = 5 

• Bag Fraction = 0.75 (25% of data reserved for cross validation) 

• Learning Rate = adjusted to reach >1000 trees in final model 

• Models 

• Spring and Fall for Region, BCR27 and BCR31 (total of 6 models) 



RESULTS 
Flight Direction 



Mean flight direction 

SPRING FALL 



RESULTS 
Observed and Modeled Stopover Habitat 



Spring (2009, 2010) 

• Nights of usable data: 

• Min: 5 (Morehead City, NC) 

• Max: 23 (Melbourne, FL) 

• Mean: 13 

• Area covered by radar: 18% 

 

 

 

 



Spring 

Regional 

Deviance Explained: 35% 

High bird densities are associated with increasing productivity (NDVI > 0.6),  

increasing canopy height (>10m), between 5 and 15 km from the coast and with  

low proportion of HWF core 



Spring  

BCR 27 

Deviance Explained: 20% 

High bird densities are associated with proximity to the coast (<30 km), 

 NDVI > 0.5, and mean canopy height > 15m 



Spring  

BCR 31 

Deviance Explained: 24% 

High bird densities are associated with proximity to the coast (<10 km), 

 NDVI at least 0.4, and increasing relative elevation up to 8 m*  



Fall (2008, 2009) 

• Nights of usable data: 

• Min: 12 (Morehead City, NC & Miami, FL)  

• Max: 38 (Wilmington, NC) 

• Mean: 22 

 

• Area covered by radar: 24% 

 



Fall  

Regional 

Deviance Explained: 62% Deviance Explained: 62% 

High bird densities are associated with increasing canopy height (>5 m), increasing  

relative elevation and moderate (>0.3) to high (>0.5) NDVI and high levels of  

canopy heterogeneity 



Fall  

BCR 27 

Deviance Explained: 23% 

High bird densities are associated with a tall and complex forest structure, with larger  

trees (>15 m) and increased heterogeneity (>50). Two zones of importance were at the immediate coast to 5 km, 

then again 50-80 km from shore. High levels of NDVI (>0.7) were also associated with high bird density 



Fall  

BCR 31 

Deviance Explained: 38% 

High bird stopover density is associated with increased relative elevation, moderate to high primary 

productivity (NDVI >0.6), and closer proximity to the coast (highest within 5 km) 

.  



Conclusions 

• Directional Analysis 
• Birds tend to follow expected routes over land 

• Some examples of Trans-Atlantic flight 

• Basic route supports disparity in density during fall between BCRs 

• Stopover Habitat Identification 
• Observed data provides the best identification for those areas 

within view of the radar 

• Models suggest that mean canopy height, canopy height 
heterogeneity, NDVI, distance to coast and relative elevation are 
most important predictors at the landscape scale 

• Predictive models provide guidance for conservation of important 
stopover sites across the broader Southeastern US 

• Spatial nonstationarity still present at both scales which may argue 
for some small scale modeling efforts and novel techniques 



DELIVERABLES 



Observed Data 

Spatial resolution = 

variable based on polar 

grid (250 m in length, 1° 

width) 

 

Layer package 

Shapefile 

 

Each station individually 

 



Modeled Data 

Spatial resolution = 1 km 

 

Regional and BCR-

specific model outputs 

 

Spring and Fall 

 

Attributes include 

observed values for all 

cells where data was 

observed 



Miami, FL : Spring 
OBSERVED – NATIVE RESOLUTION OBSERVED – 1 KM RESOLUTION 



Miami, FL : Spring 
MODELED BCR31 – 1 KM RESOLUTION OBSERVED – 1 KM RESOLUTION 



OBSERVED – NATIVE RESOLUTION 



Tallahassee, FL : Fall 

OBSERVED – NATIVE RESOLUTION 



Future Directions 

• Modeling 

• Spatial nonstationarity still an issue 

• Some options include ensemble modeling such as STEM 

 

• Groundtruthing 

• Need to verify models in the field 

• Various methods, from traditional field surveys to using eBird data 
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