### RADAR ANALYSIS OF BIRD MIGRATION STOPOVER SITES IN THE SOUTHEASTERN U.S.

David A. La Puma SILVIS Lab, University of Wisconsin, Madison

**Jeffrey J. Buler** Department of Entomology and Wildlife Ecology, University of Delaware, Newark

**Deanna Dawson** USGS Patuxent Wildlife Research Center, Laurel, MD

## Introduction

- Goal: To identify important stopover sites for migrant landbirds during spring and fall across the Southeastern US
  - **Objective 1:** Determine the general patterns of movement across the region using the directional information derived from NEXRAD
  - Objective 2: Use data collected from eight NEXRAD stations to map important stopover sites within the viewshed of each radar station
  - **Objective 3:** Use the information from Objective 2 in conjunction with landscape metrics to develop statistical models of how bird density relates to habitat structure and composition
  - **Objective 4:** Use these statistical models to predict potentially important stopover sites in areas not represented by the radar

## Methods

### Objective 1: Directional Analysis

- Radar velocity data collected 3 hours after sunset
- Mean direction calculated by weighting flight directions by target density at 20m altitudinal intervals
- Program ORIANA used to calculate mean flight direction across nights for each season at each radar station

## Methods

#### Objectives 2-4: Stopover Habitat Classification

- All data screened for bird migration, and then to remove nights with contamination by precipitation or any radar anomalies
- Data corrected for range and solar biases using algorithms from Buler and Diehl (2009) and detection probability based on Buler and Dawson 2012.
- For stopover modeling, all data resampled to 1km grid and subsampled to grid cells at least 5km apart to reduce spatial autocorrelation
- Boosted Regression Trees chosen because of ability to model complex relationships between covariates and proven track record in predictive modeling
- Parameterization of BRTs follows Elith and Leathwick 2008

# Covariates

| Variable name                  | Description                                                    | Mean value (range)                                    |
|--------------------------------|----------------------------------------------------------------|-------------------------------------------------------|
| Hardwood Forest Edge           | Proportion of Hardwood Forest Edge                             | 0.2 (0.0 – 0.77)                                      |
| Hardwood Forest Core           | Proportion of Hardwood Forest Core                             | 0.06 (0.0 – 1)                                        |
| Pasture/Cultivated             | Proportion of Pasture/Cultivated landcover class               | 0.19 (0.0 – 1)                                        |
| Grassland                      | Proportion of Grassland landcover class                        | 0.04 (0.0 – 1)                                        |
| Open Space Edge                | Proportion of Developed Open Space Edge                        | 0.05 (0.0 – 0.78)                                     |
| Open-space Core                | Proportion of Developed Open Space Core                        | 0.001 (0.0 – 0.9)                                     |
| Developed Edge                 | Proportion of Developed (Low, Med, High) Edge                  | 0.03 (0.0 – 0.76)                                     |
| Developed Core                 | Proportion of Developed (Low, Med, High) Core                  | 0.006 (0.0 – 1.0)                                     |
| Canopy Height                  | Mean basal-weighted canopy height                              | 85.32 (0.0 – 255.08)                                  |
| Canopy Height<br>Heterogeneity | Standard deviation of mean canopy height                       | 60.38 (0.0 – 122.06)                                  |
| NDVI                           | Mean Normalized Difference Vegetative Index                    | 0.67 (0.0 – 0.91) (fall)<br>0.64 (0.0 – 0.9) (spring) |
| Distance to Coast              | Distance to coast (km)                                         | 67.7 (0 – 287.5)                                      |
| Relative Elevation             | Elevation relative to surrounding landscape (3x3km window) (m) | 4.39 (0.0 – 65.6)                                     |

# **Boosted Regression Trees (BRT)**

#### Background

- Combines statistical and machine-learning methods to increase predictive ability
- Ability to model complex relationships, important when spatial nonstationarity is expected
- Not as 'black box' as other modeling techniques
- Parameterization (follows Elith and Leathwick 2008)
  - Tree Complexity = 5
  - Bag Fraction = 0.75 (25% of data reserved for cross validation)
  - Learning Rate = adjusted to reach >1000 trees in final model
- Models
  - Spring and Fall for Region, BCR27 and BCR31 (total of 6 models)

# RESULTS

**Flight Direction** 

### Mean flight direction



# RESULTS

#### **Observed and Modeled Stopover Habitat**

# Spring (2009, 2010)

- Nights of usable data:
  - Min: 5 (Morehead City, NC)
  - Max: 23 (Melbourne, FL)
  - Mean: 13
- Area covered by radar: 18%



Spring Regional

Itted Function 0.4 ed Function 0.4 8 0.4 0.0 0.2 0.4 0.6 0.8 0 50 100 150 200 MeanSpringNDVI (22.7%) MeanCanopyHeight (22%) itted Function 0.4

High bird densities are associated with increasing productivity (NDVI > 0.6), increasing canopy height (>10m), between 5 and 15 km from the coast and with low proportion of HWF core

![](_page_10_Figure_4.jpeg)

Deviance Explained: 35%

![](_page_11_Figure_0.jpeg)

![](_page_12_Figure_0.jpeg)

Deviance Explained: 24%

# Fall (2008, 2009)

- Nights of usable data:
  - Min: 12 (Morehead City, NC & Miami, FL)
  - Max: 38 (Wilmington, NC)
  - Mean: 22
- Area covered by radar: 24%

![](_page_13_Picture_6.jpeg)

#### Fall Regional

![](_page_14_Figure_1.jpeg)

![](_page_14_Figure_2.jpeg)

High bird densities are associated with increasing canopy height (>5 m), increasing relative elevation and moderate (>0.3) to high (>0.5) NDVI and high levels of canopy heterogeneity

![](_page_14_Figure_4.jpeg)

Deviance Explained: 62%

![](_page_15_Figure_0.jpeg)

#### Deviance Explained: 23%

![](_page_16_Figure_0.jpeg)

High bird stopover density is associated with increased relative elevation, moderate to high primary productivity (NDVI >0.6), and closer proximity to the coast (highest within 5 km)

Deviance Explained: 38%

# Conclusions

#### Directional Analysis

- Birds tend to follow expected routes over land
- Some examples of Trans-Atlantic flight
- Basic route supports disparity in density during fall between BCRs

### Stopover Habitat Identification

- Observed data provides the best identification for those areas within view of the radar
- Models suggest that mean canopy height, canopy height heterogeneity, NDVI, distance to coast and relative elevation are most important predictors at the landscape scale
- Predictive models provide guidance for conservation of important stopover sites across the broader Southeastern US
- Spatial nonstationarity still present at both scales which may argue for some small scale modeling efforts and novel techniques

# DELIVERABLES

#### **Observed Data**

Spatial resolution = variable based on polar grid (250 m in length, 1° width)

Layer package Shapefile

Each station individually

![](_page_19_Figure_4.jpeg)

#### Modeled Data

Spatial resolution = 1 km

Regional and BCRspecific model outputs

Spring and Fall

Attributes include observed values for all cells where data was observed

![](_page_20_Figure_5.jpeg)

![](_page_21_Picture_0.jpeg)

![](_page_22_Picture_0.jpeg)

#### MODELED BCR31 – 1 KM RESOLUTION

N

Stopover Site ClassMean bird density<br/>(percentile)Daily variability<br/>(percentile)High (>85%)Low (<25%)</td>High (>85%)Med (25-75%)High (>85%)High (>75%)Med (50 - 85%)ALLLow (<50%)</td>ALL

OBSERVED – NATIVE RESOLUTION

| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stopover Site Class               |                                   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|--|
| and the second s | Mean bird density<br>(percentile) | Daily variability<br>(percentile) |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | High (>85%)                       | Low (<25%)                        |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | High (>85%)                       | Med (25-75%)                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | High (>85%)                       | High (>75%)                       |  |
| our:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Med (50 - 85%)                    | ALL                               |  |
| isi<br>Hiss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Low (<50%)                        | ALL                               |  |

Copyriginted 2019 Earl, DisLorms, NAVIEC, TomTom, Source: Earl, Digital@lotis, DecEye.c cuRed, USDA, USOS, AEX, Ostmanding, Acrogrid, ION, 10 P. svibstopo, and the OIS USE Community

Kilometers

### Tallahassee, FL : Fall

![](_page_24_Figure_1.jpeg)

## **Future Directions**

- Modeling
  - Spatial nonstationarity still an issue
  - Some options include ensemble modeling such as STEM

### Groundtruthing

- Need to verify models in the field
- Various methods, from traditional field surveys to using eBird data

# Acknowledgements

- US Department of the Interior, US Fish and Wildlife Service
- Tim Jones, Atlantic Coast Joint Venture
- Anna Pidgeon and Volker Radeloff (SILVIS Lab, UW Madison)
- Jessica Gorzo (NDVI)
- Dan Greene and Jill Gautreaux (radar screening)
- Jaclyn Smolinsky (radar data processing and analysis)